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Abstract
A three-level stochastic model taking into account the magnetic anisotropy, precession and
diffusion of uniform magnetization of single-domain particles is developed in order to describe
the Mössbauer absorption spectra of an ensemble of magnetic nanoparticles in a weak magnetic
field. In contrast to conventional approaches searching for a distribution of the hyperfine field at
nuclei, this model allows one to take into consideration physical mechanisms of formation of
the magnetic hyperfine structure within the magnetic dynamics inherent to such materials. A
number of qualitative effects observed in experimental Mössbauer spectra taken on small
magnetic particles even in zero magnetic field can be self-consistently explained within the
model in terms of the mean-field interparticle interaction. In particular, this model predicts the
appearance of 57Fe magnetic sextets with a small hyperfine splitting slightly dependent on the
particle size and temperature in a weak magnetic field and at high temperature, which look like
effective ‘doublets’ of lines often observed in experimental spectra.

1. Introduction

The great interest of researchers in modern materials
containing nano-sized magnetic particles or clusters is
primarily due to the wide area of their application in the
nanotechnology of magnetic and magneto-optic information-
recording devices, ferrofluids, NMR tomography, chemical
catalysis, color imaging devices, biotechnology, etc. For this
reason, it is necessary to perform systematic investigations
of the structural and magnetic properties of these materials
by various methods in order to optimize the technology of
their growth and to determine the fundamental characteristics
of magnetism in an ensemble of magnetic nanoparticles. A
number of techniques can be used to study magnetic properties
of nanoparticles, among which one of the most informative is
Mössbauer spectroscopy. The shapes of the temperature- and
field-dependent Mössbauer spectra obviously supply one with
a large amount of information about physical characteristics
inherent to the systems studied. The only way to extract the
rich information from the experimental data is to define a
model of the magnetic dynamics in order to describe the whole
set of experimental data [1–4].

In contrast to the conventional magnetization measure-
ments which are carried out at lower frequencies, Mössbauer
spectroscopy can reveal the magnetic dynamics of nanoparti-

cles at higher frequencies because the particle size is so small
that the relaxation time of the magnetic moment of each parti-
cle can fall in the characteristic nuclear time window (10−11–
10−6 s for 57Fe nuclei) and superparamagnetic relaxation can
be the decisive factor in realizing specific shapes of the ab-
sorption spectrum [3, 5–7]. However, the conventional mag-
netization curves are widely measured as a function of both
temperature and magnetic field [8–16], which supply one with
a lot of data on the non-equilibrium magnetism of nanopar-
ticles [4, 17], while the Mössbauer spectra of fine magnetic
particles are usually collected as a function of temperature
only [18–23]. In rare cases, when the spectra are measured
in a strong external magnetic field of several Tesla, which
is comparable with the strength of the hyperfine field, Hhf,
at the nucleus, one can roughly estimate only the average
saturation magnetization of the sample as a whole [24–26].
Meanwhile, a substantial influence of weak magnetic fields
(of about a kilooersted or less) on magnetic characteristics
of small particles has been observed not only in magnetiza-
tion curves [8–16], but also in the field-dependent shape of
Mössbauer spectra measured long ago [27, 28]. Moreover, the
Mössbauer spectra of modern nanostructured magnetic alloys
display a diverse transformation of their shapes in a radiofre-
quency magnetic field with an amplitude of about only ten
oersteds [29, 30].
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Figure 1. (Left panel) 57Fe Mössbauer spectra (vertical dashes) of iron-oxide nanoparticles (mean size of about 4 nm [38]) in a magnetic field
H . Here and below the field direction is perpendicular to the gamma-beam. The resulting and partial spectra (solid lines) are calculated within
the corresponding Gaussian hyperfine field distribution P(Hhf) shown on the right panel and an effective doublet of Gaussian-broadened
lines [40].

Such a strange situation with almost diminishing
usage of a highly informative and very simple technique,
i.e. measurements of the Mössbauer spectra of magnetic
nanomaterials in weak static magnetic fields, can be explained
by only the fact that there is no theoretical basis which
could be used to interpret the field-dependent shape of the
spectra at least in the first approximation. The general
theory of stochastic relaxation of the uniform magnetization
of ferromagnetic single-domain particles was developed by
Brown in the early 1960s [31] on the basis of the well
known Landau–Lifshitz–Gilbert equation [32, 33]. However,
its application in a practical sense is restricted by only
numerical simulations without any real analysis of not
only the Mössbauer spectra [3, 6], but even magnetization
curves [34, 35]. Instead, researchers prefer to interpret the
experimental data taken on real samples within the simplest
classical models [36, 37], which often reduce to estimates of
one or a finite number of empirical parameters such as the
blocking temperature, the coercivity, the mean particle size and
the magnetic anisotropy constants [9–16, 18–26].

The main goal of the present paper is just to develop such a
theory of magnetic dynamics and the corresponding hyperfine
interaction, which can be used in numerically analyzing the
Mössbauer spectra taken on an ensemble of nanoparticles in
a weak static magnetic field. This theory is principally based
on the general equations of stochastic relaxation [31], but is
reduced to a three-level relaxation model which continues the
line of ‘physically oriented’ phenomenological models of the
classical two-level relaxation in the absence of a field [5] and
the generalized Stoner–Wohlfarth relaxation in a field [1–4].

2. Hyperfine field distribution

Figure 1 shows the typical 57Fe Mössbauer absorption spectra
of nanoparticles of iron oxide in a polymer matrix [38],
which were measured in weak magnetic fields (details of the
preparation of the samples and Mössbauer measurements can
be found in [38]). Because of the absence of a theory to
describe or even to qualitatively interpret these spectra at the
present time, one can only consider a ‘universal’ theoretical
model used to analyze the Mössbauer spectra of an arbitrary
magnetic hyperfine structure and their temperature evolution.
This approach is based on the introduction of continuous
distributions of the hyperfine field Hhf on a nucleus [39].
In this model the absorption spectrum for gamma quanta
with energy Eγ = h̄ω in the presence of the continuous
Hhf distribution given by the probability function P(Hhf) is
described by the simple expression

σ̄ (ω) =
∫

L̄(ω, Hhf)P(Hhf) dHhf, (1)

where ω is the spectral frequency,

L̄(ω, Hhf) = σa�
2
0

4

∑
i

Ai

(ω − ωi (Hhf))
2 + �2

0/4
, (2)

σa is the effective absorber thickness, �0 is the width of the
excited nuclear level, Ai is the intensity of the i th hyperfine
transition at the resonance frequency

h̄ωi (Hhf) = E0 + (mege − mggg)μN Hhf, (3)
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E0 is the energy of the resonance transition, μN is the nuclear
magneton, mg and me are the nuclear spin projections onto the
hyperfine field direction, and gg and ge are the nuclear g factors
for the ground (g) and excited (e) nuclear states, respectively.
(For the 57Fe isotope we will refer to below, the nuclear spins
Ig = 1/2, Ie = 3/2 and the M1-type magnetic dipolar
radiation occurs, for which transitions with changes in nuclear
spin projections of more than unity (mg = ±1/2 → me =
∓3/2) are forbidden. Hence, the 57Fe partial spectrum (2)
consists of not eight lines but six lines, the so-called magnetic
sextet.)

The basic advantage of this approach is the simplicity of
its computer realization, because it does not require a priori
information on the form of the desired distributions. The
application of this method allows one formally to reconstruct
the P(Hhf) function for nanoparticles and its temperature
evolution from the experimental Mössbauer spectra, which
results in qualitative estimates of the abovementioned physical
parameters. However, the conventional approach does not
provide really quantitative estimates of either the distribution
found or the corresponding parameters. The improved
variant of this technique allows one to evaluate the resulting
hyperfine field distributions with an indication of their mean-
square deviations [40]. In this approach additional Gaussian
broadening of lines of a magnetic sextet is introduced, which
can be regarded as a good estimate for the distribution of the
hyperfine field over different sites in the sample, which are
represented by the sextet. The resulting Hhf distribution can
be expressed as a sum over all sextets of Gaussian broadened
lines [40]:

P(Hhf) =
∑

i

A′
i√

2πγi

exp

⎡
⎢⎣−

(
Hhf − H̄ (i)

hf

)2

2γ 2
i

⎤
⎥⎦ (4)

where A′
i is the area of the i th sextet, γi is the additional

Gaussian linewidth for outer lines of the sextet, and H̄ (i)
hf is

the normalized separation between the outer lines of the sextet.
The corresponding distributions evaluated from the Mössbauer
spectra shown in figure 1 are displayed in the right-hand
panel of the figure. Because the hyperfine field distribution
is determined in equation (2) by the parameters of lines, which
are adjustable in fitting, one can also estimate the mean-square
deviations of P(Hhf) for each point Hhf [40], which are also
shown in the right-hand panel of figure 1 by dashed lines.

Even not going into other details, one understands that,
in spite of a rather good fit with the experimental spectra,
this approach describes only an effective magnetization of the
studied ensemble of nanoparticles in a magnetic field, which
is, of course, formal in character. In this situation, one should
develop a theory for describing the magnetic dynamics in the
samples studied and corresponding Mössbauer spectra in order
to extract something more real from the experimental spectra.

3. General theory of stochastic relaxation of
particle’s magnetization

Recently we have developed a unified phenomenological
model of magnetic dynamics of an ensemble of single-

domain particles, which can be utilized for analyzing both the
magnetization curves and the Mössbauer spectra depending
on temperature and a magnetic field [1–4]. As a first
approximation, we have performed a generalization of the
well known Stoner–Wohlfarth model [36] for homogeneously
magnetized particles or clusters with uniform magnetization
M0 and uniaxial magnetic anisotropy with energy density K
for a more accurate description of relaxation processes within
Néel’s ideas [37]. The generalized model has been constructed
using only the energy density E of such particles in an external
magnetic field H [36],

E = −K cos2 θ − HM (5)

(θ is the angle between the easiest magnetization axis and the
magnetization vector) and two relaxation parameters making
sense of the probabilities of the transitions between two local
states with the energy minima E (min)

i (H,�) [2, 4]:

p12,21(H,�, T ) = p0

2

×
∑
i=1,2

exp

⎡
⎣−

(
E (max)

i (H,�) − E (min)
1,2 (H,�)

)
V

kBT

⎤
⎦ (6)

(E (max)
i (H,�) are the local energy maxima, � is the angle

between the external field and the easiest magnetization axis,
p0 is a relaxation parameter slightly depending on temperature
T , and V is the particle’s volume). A number of magnetization
phenomena observed experimentally versus temperature, time,
and external magnetic fields can be qualitatively described
within this two-level model [2, 4].

The obvious disadvantage of the generalized Stoner–
Wohlfarth model is that thermal fluctuations in the local
energy minima are not taken into account. In particular,
the precession of magnetic moments of nanoparticles in
the magnetic anisotropy field and zero external field results
in a qualitative transformation of the absorption spectra in
the hyperfine field rotating about a certain axis [41, 42].
Even in the simplest case, when the characteristic precession
frequency of the particle’s magnetization is much higher than
the precession frequency of the nuclear spin in the hyperfine
field, the effect of fast rotation reduces only to the effective
decrease in the hyperfine field [3, 6, 7, 43]:

Hhf(θ) = Hhf(0) cos θnz (7)

where nz is the unit vector along the anisotropy axis. It is clear
that the effects of the precession of the particle’s magnetization
in an external magnetic field should be more complicated and
must be taken into account. Let us try to do so.

The general theory of the stochastic relaxation of
the uniform magnetization M for the statistical ensemble
of ferromagnetic single-domain particles is based on the
following ‘Langevin equation’ describing the reorientation of
the vector M in the presence of a rapidly fluctuating chaotic
field h(t) [31]:

dM

dt
= γM ×

[
Heff − η

dM

dt
+ h(t)

]
(8)
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where γ is the gyromagnetic ratio, η is the dissipation
coefficient,

Heff ≡ Heff(θ, ϕ) = − V

M0
∇E(θ, ϕ) (9)

where θ and ϕ are the polar and azimuth angles, respectively,
defining the direction of the vector M . Under the assumption
that the stochastic process h(t) is stationary and isotropic, i.e.

〈hi (t)〉 = 0,
〈
hi (t)h j (t + τ )

〉 = μδi jδ(τ ). (10)

Brown has derived the following differential equation for the
probability density (population) W (θ , ϕ) of states with a given
direction of the vector M :

∂W

∂ t
= −P̂W (11)

where

P̂ = −D

[
� − V

kT
∇ (∇E(θ, ϕ))

]

− γ

M0
∇

(
M

M0
× ∇E(θ, ϕ)

)
(12)

is the diffusion operator in the representation given in [44], and
the diffusion coefficient satisfies the Einstein relation

D = γ ηkBT

V M0
= γμ

2M0
. (13)

The relaxation operator given by equation (12) has the form of
the Fokker–Planck operator and its terms describe the isotropic
diffusion, drift towards the local minima of the anisotropy
energy, and precession of the vector M in the effective field
Heff (figure 2), respectively.

Since classical work [31], the analytic properties of
differential equation (11) have been studied for the simplest
case of the longitudinal relaxation, where the external field
is directed along the magnetic anisotropy axis. In this case,
potential (5) is axially symmetric, homogeneous precession
does not affect the relaxation properties, and the populations
of the states, W (θ, ϕ), are independent of the azimuth angle ϕ.
Correspondingly, the equilibrium state of the particle ensemble
is described by the Gibbs distribution over the stochastic states,
i.e. over the precession orbits of the end of vector M on the
sphere of radius M0 about the easy axis with a given θ value:

W (θ) ∝ sin θ exp

[
− E(θ)V

kBT

]
. (14)

However, this approach is not applicable to describe
the Mössbauer spectra of nanoparticles with the chaotic
distribution of the anisotropy axes, when it is necessary to
consider the arbitrary orientation of vector H with respect to
the magnetic anisotropy axis in equation (5), i.e. to take into
account the dependence on angle ϕ in equations (8)–(12).

On the other side, the relaxation model for describing
the Mössbauer spectra of nanoparticles in the absence of an
external magnetic field has been defined within the quantum
mechanical description of a nanoparticle with the total spin S
and 2S + 1 possible states of the projection Sz , the transitions

Figure 2. (Top) Constant energy levels (trajectories of the uniform
magnetization’s precession over the sphere with radius M0) for
single-domain particles with the uniaxial magnetic anisotropy in a
magnetic field H (h = 0.1, � = 45◦). Dashed lines show the
directions of the magnetization vector corresponding to the local
energy minima (M1 and M2) and the absolute maximum (M3) of
energy (5). (Bottom) Energy dependence of the period of the uniform
magnetization’s precession along the corresponding trajectory CE .
The inset shows the time dependence of the angular velocity along
the selected trajectories CE with the given energies Ea, Eb, Ec and
Ed.

between these states being determined under the assumption
that relaxation is associated with the transverse components of
the random field h(t) [3, 6]. From the macroscopic viewpoint
this one-dimensional model describes stochastic transitions
between orbits of the uniform magnetization precession (with
constant energy E(θ)) in the effective field

Heff(θ) = Heff(0) cos θnz, (15a)

where the parameter

Heff(0) = 2K V/M0 (15b)

defines the characteristic precession frequency

�0 = −γ Heff(0). (15c)

4
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This approach can be applied to our case for describing the
magnetic dynamics and the relaxation Mössbauer spectra of
nanoparticles in a magnetic field, taking into account the
most significant points in this changed situation, i.e. the
complication of the form of the relaxation matrix specified
by equation (12) and the appearance of an inhomogeneous
precession in the effective field Heff given by equation (9).
As clearly seen in figure 2, in a magnetic field with strength
lower than the critical value HC(θ) [2, 36], the vector M for
a given energy E in the absence of dissipation describes a
conic surface around one of the three poles corresponding to
two local minima and the absolute maximum of energy (5).
Here and below, the external magnetic field is written in the
normalized form [36]:

h = H M0/2K . (16)

The shapes of the precession orbits are determined by the
Hamiltonian (5) and obvious relation

M2
x + M2

y + M2
z = M2

0 , (17)

the time dependence of the precession of the vector M(E,�)

along each trajectory CE is defined by equations (8) and (9) in
the absence of dissipation, while the corresponding precession
period is determined by the elliptic integral along the
corresponding trajectory CE in view of equations (5), (8),
and (9),

T (E,�) = 1

�0h sin �

∫
CE

dmz√
1 − m2

x − m2
z

(18)

where the normalized projections of the vector M(E,�) are
introduced:

mx,z ≡ Mx,z (E,�)

M0
(19)

which are related to each other and to the given energy E by
equation (5). The precession period versus energy is shown
at the bottom of figure 2, which clearly manifests a strong
increase in the period for energy values corresponding the
equatorial trajectories on the top of this figure in accordance
with zero precession frequency for θ = π/2 in zero field (see
equation (15)).

However, the most important feature arising in an applied
magnetic field is that the angular velocity of precession
specified by the effective field (9) changes continuously both
in magnitude and in direction along each trajectory CE :

�E(θ, ϕ,�) = �0

√
m2

z (θ, ϕ) + 2hmz(θ, ϕ) cos � + h2.

(20)
(Note that the angular velocity (20) is not equal to zero at each
point (θ, ϕ) of each trajectory CE , in contrast to the case of
axial symmetry for H = 0 and/or � = 0 [3, 41, 42].) In
this case, if the constant D of the isotropic diffusion is not
much higher than the characteristic frequency of precession
along a given trajectory CE , the populations of the states,
WE (θ, ϕ), with the same energy E at different points (θ, ϕ)
of this trajectory are inversely proportional to the effective
(corrected by diffusion) instantaneous angular velocity at these

points [44]. The time dependence of the angular velocity
along the selected trajectories CE is shown in the inset of
figure 2, where the minimum value of the angular velocity �E

for a given energy E corresponds to the maximal projection
Mx (E,�).

This fact drastically changes the conventional scheme for
calculations of both the average magnetization and Mössbauer
absorption spectra of an ensemble of single-domain particles.
According to a schematic consideration in [44], in this case
the very precession orbits CE can be considered as stochastic
states of each particle. Then, in the case of slow diffusion
(D � �0) each state (orbit) can be characterized by the
mean magnetization M̄(E,�), which is again determined by
the elliptic integrals along the corresponding trajectory CE

according to equations (8) and (9):

M̄z,x (E,�) = 1

T (E,�)�0h sin �

∫
CE

Mz,x dmz√
1 − m2

x − m2
z

(21a)
and the symmetry condition

M̄y(E,�) = 0. (21b)

Furthermore, it is necessary to determine the probability of
the transition per unit time between the stochastic states
specified by, e.g., the statistical characteristic of the random
field h(t) by analogy with [3, 6, 31]. Thus, the model of
magnetic dynamics for calculating the magnetic characteristics
in various measurement methods, including the Mössbauer
spectroscopy, becomes determined.

4. Three-level relaxation model

It is not difficult to write the general expression for the
Mössbauer absorption spectrum in the representation given
in the previous section; however, the main problems of
analysis are associated with the optimization of a calculation
procedure, first of all for calculation of the Liouville hyperfine-
interaction superoperators [2] under the average magnetization
M̄(E,�) changing continuously both in magnitude and
in direction and the corresponding average hyperfine field
H̄hf(E,�) ∝ M̄(E,�) for different orbits and �. This
is why we will consider here a simplified version of such
a model, which allows one not only to analyze (in the first
approximation) the experimental Mössbauer spectra of an
ensemble of nanoparticles in a magnetic field, but also to make
qualitative conclusions on specific shapes of the absorption
spectra in this case.

At first glance, this task can be reduced to a formal
specification of the generalized Stoner–Wohlfarth model [2, 4]
based on equations (5) and (6) to the case of three-dimensional
character of the energy barrier between the local energy
minima. That is, one can average the uniform magnetization
over thermal fluctuations into each local energy minimum by
analogy with the well known approximation [43]

M̄i (T,�) =
∫ E (max)

1 (H,�)

E (min)
i (H,�)

M̄(E,�)Wi (E, T,�) dE (22a)

5
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where

Wi (E, T,�) = 1

Zi
exp(−EV/kT )

∫
CE

d�. (22b)

The integral in equation (22b) is taken over the solid angle
along the corresponding trajectory CE and the normalization
constants Zi are defined by the condition

∫ E (max)
1 (H,�)

E (min)
i (H,�)

Wi (E, T,�) dE = 1. (22c)

However, as clearly seen in figure 2, the region of stable
rotation about the pole corresponding to the absolute energy
maximum E (max)

2 takes a substantial fraction of the stochastic
space (points over the unit sphere), that is increasing with the
strength of an external magnetic field. When H > HC(θ),
there remains a single energy minimum characterized by the
mean magnetization M̄1(T,�). This is why this region must
be taken into account in developing the relaxation model for the
description of both the magnetic dynamics and corresponding
Mössbauer spectra of an ensemble of single-domain particles.
Thus, we come to the three-level relaxation model within the
stochastic states characterized by the mean magnetizations
M̄i(T,�) (M̄3(T,�) defined by equation (22a), where the
integration limits are E (max)

1 and E (max)
2 ) and the equilibrium

populations determined by the obvious relation

W̄i = Zi/(Z1 + Z2 + Z3). (23)

Now one has to define a relaxation model, i.e. the
probabilities of transitions per unit time between the three
stochastic states. Assuming that the relaxation between the
states occurs as a random walk of the vector M with small
step lengths (rotation by a small angle), the transitions between
the states corresponding to local energy minima occur only
through state 3 corresponding to the absolute energy maximum
(see figure 2), i.e., p12 = p21 = 0 [6]. Then, the
other relaxation rates are determined by the detailed balance
principle:

p3i = p0, (24a)

pi3 = p3i
W̄3

W̄i
. (24b)

Here, i = 1, 2 and p0 is a phenomenological constant specified
by, e.g., the statistical characteristics of the random field h(t)
by analogy with [3, 6, 31]. Thus, the three-level relaxation
model is completely defined.

5. Mössbauer spectra within the three-level
relaxation model

The calculation of Mössbauer spectra within the three-level
relaxation model defined by equations (21)–(24) can be
performed in terms of the Anderson’s stochastic approach [45],
according to which the absorption spectrum is described by the
general expression [2, 46, 47]

σ(ω,�) = −σa�0

2
Im

∑
η

Sp
(

V̂η 〈W | Â−1(ω,�) |1〉 V̂ +
η

)

(25)

where V̂η is the operator for the interaction of the gamma-
quantum with a given polarization η and the nucleus, 〈W |
is the row vector of the occupation probabilities of the
stochastic states in equilibrium, |1〉 is a column vector with
all components equal to unity and the superoperator

Â(ω,�) = ω − L̂hf(�) + iP̂(�) + i�0/2 (26)

is defined by the Liouville operator of hyperfine interaction that
is diagonal over the stochastic states,

〈i| L̂hf(�) | j〉 = L̂Ĥ (M̄i (�))δi j (27)

and the relaxation matrix

P̂ = P̂ ⊗ 1̂n, (28a)

Pi j =
j �=i

pi j, (28b)

Pii = −
∑
j �=i

pi j . (28c)

Here, the superoperator L̂Ĥ (M̄i (�)) acts in the space of (2Ig +
1)(2Ie + 1) nuclear variables [48],

(L̂Ĥ )memgm′
em′

g
= H (e)

mem′
e
δmgm′

g
− H (g)

mgm′
g
δmem′

e
, (29)

i.e. is determined by the Hamiltonians of hyperfine interaction
for the ground and excited states, which in our case take the
forms

Ĥ (g,e)
i (�) = −gg,eμN H (0)

hf

Î(g,e)M̄i (�)

M0
(30)

where H (0)
hf is the hyperfine field at extremely low temperature,

Î(g,e) is the operator of nuclear spin, and 1̂n is the identity
superoperator in the space of nuclear variables.

The resulting absorption spectrum of an ensemble of
single-domain particles is defined by the sum over polarization
η according to the scheme proposed in [47] and the averaging
of partial spectra (25) over the chaotic distribution of the
anisotropy axes:

σ(ω) =
∫

σ(ω,�) sin � d�. (31)

Using equations (25)–(31) one can calculate the Mössbauer
absorption spectrum in the framework of the three-level
relaxation model (21)–(24) for given values of external (H and
T ) and intrinsic (H (0)

hf , K , V , M0, and p0) parameters.
Figure 3 shows typical 57Fe Mössbauer absorption spectra

calculated within the three-level relaxation model for various
values of the normalized external field h and the effective
energy barrier K V/kBT . (Note that the rank of matrices (26)
in this case is equal to 24.) Along with the obvious effect of
the resulting magnetization of the ensemble of nanoparticles
in a field, a great diversity of the spectral shapes observed
in the figure reflects a non-trivial character of the local and
equilibrium magnetization at different values of temperature
and field. The spectra in the negligible field (h = 0.01)
display a slightly resolved magnetic hyperfine structure (sextet
of lines) and a collapsed (due to relaxation) central line. In

6
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KV/kBT

Figure 3. 57Fe Mössbauer spectra of an ensemble of nanoparticles
(μ0 H (0)

hf = 50 T, p0 = 1 GHz) in a magnetic field, calculated in the
three-level relaxation model as a function of the effective energy
barrier K V/kBT (from left to right) and the normalized field
strength h (from top to bottom).

a stronger, but still weak, field (h = 0.1), the magnetic
hyperfine structure visually disappears and the spectra look
like a doublet of lines with the splitting slightly depending
on the effective energy barrier, i.e. on temperature and/or the
particle size. The spectra of the magnetic nanomaterials often
certainly exhibit line doublets [3, 19–28] (see also figure 1),
which are usually attributed to the presence of the quadrupole
hyperfine interaction in the presence of the electric field
gradient on the nucleus. However, such interpretation often
seems very artificial; for example, such a ‘doublet’ is often
realized at higher temperatures, but quadrupole splitting is
completely absent in the spectra at lower temperatures. Such
behavior suggests that the observed ‘doublets’ are likely of
magnetic rather than electric nature [3], which is also justified
by the present calculations, where the quadrupole hyperfine
interaction is not taken into account.

With external field increasing (h = 0.5 and 1) there
again appears a resolved magnetic hyperfine structure on the
background of the ‘doublet’ in the spectra. In a strong magnetic
field (h = 2) the magnetic hyperfine structure becomes well
resolved. Indeed, such a transformation of the spectral shape
with field changing is directly related to the longstanding and
heated debates of two research groups on pages of authoritative
journals (see [49–52] and references therein). One of the
groups contended that the presence of interparticle interaction,
i.e. a mean (‘molecular’) field at each particle in the ensemble,
results in fastening the magnetization’s relaxation, whereas
the other made the contrary assertion, i.e., ‘an applied field’
is slowing down the relaxation. Not going into details, note
that all the arguments of both the groups were based on
the estimates of average relaxation time (the probabilities of
transitions) between two local energy minima. However, the
latter are obviously nonequivalent in a magnetic field and the

Figure 4. Partial absorption spectra of particles (μ0 H (0)

hf = 50 T,
p0 = 1 GHz, K V/kBT = 1) as calculated in the three-level
relaxation model for different orientations of the anisotropy axis with
� = 10◦ (points), 45◦ (solid lines), and 80◦ (open circles) in a
magnetic field of different strengths h (from top to bottom).

probabilities of transitions from one state to the other are
different, which defines local relaxation magnetic properties as
a consequence of the asymmetric magnetization fluctuations
resulting in specific shapes of Mössbauer spectra [21, 53].
Nevertheless, the spectra shown in figure 3 manifest both
the speeding up (h = 0.1) and slowing down (h � 0.5)
relaxation in a magnetic field (or in the presence of the mean-
field interaction), which actually justifies both conclusions of
the two groups.

A qualitative character of such a behavior of the local
magnetization can be clarified if one considers the limiting case
of weak magnetic field (h � 1) when [17]

E (min)

1,2 (H,�) ≈ −K V (1 ± 2h cos �) (32a)

and
E (max)

1,2 (H,�) ≈ ±2hK V sin � (32b)

up to the terms linear in h. As clearly seen from these
equations, barrier for local (not absolute) energy minimum 2 is
always decreasing with h increasing, which evidences for the
fastening the relaxation of this local state. Another situation
occurs for the absolute energy minimum 1, when the local
energy barrier is decreasing with h increasing only for the
particles with � � π/4, while the barrier for the particles with
smaller � is increasing with h. This is why both the effective
fastening and slowing down relaxation are observed in the
Mössbauer spectra of nanoparticles [21, 49–52]. This effect is
demonstrated in figure 4 where the partial Mössbauer spectra
of particles with different orientation of the anisotropy axis are
shown. This figure also helps one to understand the specific
shapes of the resulting absorption spectra of an ensemble of
particles, which are shown in figure 3.
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Figure 5. 57Fe Mössbauer spectra of an ensemble of nanoparticles
(μ0 H (0)

hf = 50 T, p0 = 3 GHz) as calculated in the three-level
relaxation model for the Gaussian distribution of the particle volume
(K V̄/kBT = 1 and σV /V̄ = 0.5) in a magnetic field of different
strengths h (from top to bottom).

The comparison of the Mössbauer spectra calculated
within the three-level model (figures 3 and 4) with the
experimental data (see figure 1) shows that the lineshapes are
much wider in the experimental curves owing to the natural
distribution of the physical parameters in the sample under
investigation, e.g. the volume distribution of particles P(V ).
In this case, the resulting Mössbauer spectra of the ensemble
of particles are expressed as

σ̄ (ω) = 1

ZV

∫
σ(ω)V P(V ) dV (33a)

where ZV is the normalization constant:

ZV =
∫

V P(V ) dV . (33b)

Figure 5 shows typical 57Fe Mössbauer absorption spectra of
the ensemble of nanoparticles calculated within the three-level
relaxation model for various values of the normalized external
field h and the Gaussian distribution of particle volume:

P(V > 0) = exp

(
− (V − V̄ )2

2σ 2
V

)
. (34)

The transformation of the spectra with increasing field
qualitatively reproduces the evolution of the experimental
spectra shown in figure 1. Moreover, an effective ‘doublet’ of
lines in a weak magnetic field (h = 0.1) is clearly observed
in the volume-averaged spectra due to slight dependence of
its splitting on the effective energy barrier (particle size and/or
temperature) as seen in figure 3.

The formalism described above principally allows one
to fit the experimental Mössbauer absorption spectra like

those shown in figure 1 and to determine the parameters
(H (0)

hf , K , V̄ , σV , M0 and p0) inherent to the sample
under investigation. However, this problem requires a
separate, primarily qualitative analysis in order to optimize
the corresponding calculation procedure and results will be
published elsewhere. Let us consider here one more qualitative
point, namely, the Mössbauer lineshape for an ensemble of
nanoparticles in the limiting case of high temperature.

6. High-temperature limit

First, we come back to the limiting case of a weak magnetic
field (h � 1) when the population of level 3 can be neglected.
In the high-temperature limit (kBT � K V ), when the regime
of fast relaxation between states 1 and 2 of local energy minima
is realized, the hyperfine field Hhf over the nuclear lifetime is
proportional to the mean magnetization of each particle with a
given �:

M̄(�) = W̄1(�)M̄1(�) + W̄2(�)M̄2(�). (35)

Then, the absorption spectrum (25) in the fast relaxation
regime is defined by the mean Liouville operator of hyperfine
interaction averaged over the stochastic states [2]:
¯̂Lhf(�) = W̄1(�)L̂H (M̄1(�)) + W̄2(�)L̂H (M̄2(�))

= L̂H (M̄(�)). (36)

In this case the Mössbauer absorption spectrum of an ensemble
of particles is determined by equations (1)–(3), where

P(Hhf) = M0

H (0)
hf

(
∂ M̄(�)/∂ cos �

) . (37)

A routine analysis of equations (22) and (23) in this limiting
case allows one to estimate the lower boundary for the mean
magnetization as follows:

M̄(�) ≈ M0

√
h2

4
sin2 � + x2

9
cos2 �, (38)

where
x = M0 H V/kBT,

is the parameter of the Langevin function [54]. Equation (38)
defines the asymptotic trend of the local magnetization for
each group of particles with the given � to a constant
with temperature increasing in complete analogy with the
asymptotic behavior of magnetization and susceptibility in
the high-temperature limit [17], which is different from the
Langevin limit for ideal superparamagnetic particles [55].

Taking into account equations (35)–(38), the Mössbauer
absorption spectrum of an ensemble of particles is defined by
equations (1)–(3) with the hyperfine field distribution

P(Hhf) = 1

H (0)
hf

√
h2/4 − x2/9

hhf√
h2/4 − h2

hf

(39a)

where non-zero values of P(Hhf) are realized in the interval

x/3 < hhf = Hhf

H (0)

hf

< h/2. (39b)

8
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Figure 6. Hyperfine field distribution P(Hhf) within the three-level
relaxation model and the limiting case of a weak magnetic field
(h � 1) and high temperature (kBT � K V ).

The probability function (39) is shown in figure 6, that
demonstrates that the effective distribution P(Hhf) for h � 1
appears to be rather narrow and concentrated at the upper
boundary of the interval (39b). That is, the distribution actually
describes the effective ‘doublets’ of lines in figures 3–5 and
points to a magnetic nature of the doublet observed in figure 1
at H = 0, which can be explained, for instance, by the
presence of a weak interaction between particles in the sample
studied.

In stronger fields the hyperfine field distribution P(Hhf)

broadens: the contribution of the effective magnetic ‘doublet’
to the absorption intensity decreases and there appears a
slightly resolved hyperfine structure on the background of
the doublet (figures 3–5). In the strong magnetic field limit
(h � 1) a single local energy minimum is realized, so one can
estimate from equation (22) the mean magnetization of each
particle at high temperature (kBT � H M0V ):

M̄(�) ≈ M0

(
x

3
+ π

16

K V

kBT
sin 2�

)
. (40)

Here, the first term in the brackets in equation (40) is the
classical high-temperature limit of the Langevin function for
ideal superparamagnetic particles, whereas the second term
is a correction for the magnetic anisotropy. The absorption
spectrum of an ensemble of particles in this case is again
defined by equations (1)–(3), where the effective distribution
P(Hhf) is concentrated in the vicinity of Hhf = H (0)

hf x/3 and
defines the shape of spectra shown in figures 1 and 3 (h = 2).

7. Conclusions

Thus, the three-level relaxation model presented above and
taking into account the magnetic anisotropy, precession and
diffusion of uniform magnetization can be efficiently used to
describe the experimental Mössbauer absorption spectra of an
ensemble of magnetic nanoparticles in a weak magnetic field.
This model allows one to take into consideration physical
mechanisms of formation of the magnetic hyperfine structure
within the magnetic dynamics inherent to such materials.
A number of qualitative effects observed in experimental
Mössbauer spectra taken on small magnetic particles even
in zero magnetic field can be self-consistently explained

within the model in terms of the mean-field interparticle
interaction. In particular, this model predicts the appearance
of 57Fe magnetic sextets with a small hyperfine splitting
slightly dependent on the particle size and temperature in a
weak magnetic field and at high temperature, which look like
effective ‘doublets’ of lines often observed in experimental
spectra. Such magnetic ‘doublets’ should be taken into account
in treating the experimental Mössbauer spectra along with
conventional doublets of lines arising from the quadrupole
hyperfine interaction of electric nature.

This relaxation model can be also efficiently used for
analyzing the magnetization curves [8–17] as well as being
modified to describe the interacting single-domain particles in
the framework of the mean-field approximation [1, 21, 49–53],
which will significantly expand its application area for
analyzing experimental data. At the same time, it should
be taken into account that this model is adequate in the
slow diffusion limit when the isotropic diffusion constant
is much less than the characteristic frequency of the
uniform magnetization’s precession, so more accurate models
for analyzing both the Mössbauer absorption spectra and
magnetization curves should be developed, which help one
to get more specific information about the samples studied as
compared to the results of the analysis presented here.

In order to describe the magnetic dynamics of an
ensemble of single-domain particles in the general case one
should consider a multi-level model taking into account
a continuous relaxation process with the inclusion of the
diffusion and precession of uniform magnetization. Retaining
the main idea of the general approach presented in section 3,
where the precession orbits with a given energy value are
regarded as stochastic states of each particle, the probabilities
of transitions per unit time between the stochastic states
(orbits) can be determined by the components of the random
field (10) which are transverse to the instantaneous value of
the effective field (9) at each point (θ , ϕ) of the adjacent
orbits, by analogy with the microscopic model developed in
the absence of an external magnetic field [3, 6]. In fact,
such a model for describing the equilibrium magnetization
of an ensemble of particles has been already developed
and the results will be published soon [56]. In particular,
the non-Langevin asymptotic behavior of high-temperature
magnetization, which is predicted within the two-level
model [17] and revealed specifically in the Mössbauer spectra
according to equation (38), remains qualitatively within the
multi-level model and is even experimentally observed [56].

The Mössbauer spectra of an ensemble of single-domain
particles in a magnetic field can be also described within the
multi-level model using the same equations (25)–(31) with the
superoperators of a more general form defined by matrices of
a higher rank N = (2S + 1)(2Ig + 1)(2Ie + 1) where S is
the total particle spin (see, e.g., [3, 6]). Therefore, the main
problems of analysis are associated with the optimization of
a calculation procedure dealing with the Liouville operators
staying in equation (26) under the average magnetization
M̄(E,�) changing continuously both in magnitude and
in direction and the corresponding average hyperfine field
H̄hf(E,�) ∝ M̄(E,�). At first glance, this task seems

9
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to be extremely cumbersome because, first of all, S is about
1000 for real nanoparticles. However, the relaxation matrix
P̂ in the multi-level model is actually a superposition of
tridiagonal terms due to a thermal activation between the
adjacent trajectories [3, 6] and two additional (non-tridiagonal)
elements that describe the rates of relaxation transitions
between the energy level first excited as compared to the local
energy maximum E (max)

1 and the most excited energy level in
the local minimum 2 (see, e.g., orbits labeled Ec and Eb in
figure 2). This form of the relaxation matrix allows one to
reduce the superoperator Â(ω,�) specified by equation (26)
to a tridiagonal block form in the space of the stochastic states
by means of an orthogonal transformation, which, in turn,
essentially simplifies calculations by equation (25). Studies in
this direction are in progress.
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Joulivet J P 2000 J. Magn. Magn. Mater 37 39
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